Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.928
1.
Article En | MEDLINE | ID: mdl-38728610

Porphyrin-based metal-organic frameworks (MOFs) are ideal platforms for heterogeneous photocatalysts toward CO2 reduction. To further explore photocatalytic MOF systems, it is also necessary to consider their ability to fine-tune the microenvironments of the active sites, which affects their overall catalytic operation. Herein, a kind of ionic liquid (IL, here is 3-butyric acid-1-methyl imidazolium bromide, BAMeImBr) was anchored to iron-porphyrinic Zr-MOFs with different amounts to obtain ILx@MOF-526 (MOF-526 = Zr6O4(OH)4(FeTCBPP)3, FeTCBPP = iron 5,10,15,20-tetra[4-(4'-carboxyphenyl)phenyl]-porphyrin, x = 100, 200, and 400). ILx@MOF-526 series was designed to investigate the effects of the microenvironmental and electronic structural modification on the efficiency and selectivity of the photochemical reduction of CO2 after introducing IL fragments. Compared to parent MOF-526, the production and selectivity of CO were greatly improved in the absence of any photosensitizer under visible light by the ILx@MOF-526 series. Among them, the CO yield of IL200@MOF-526 was up to 14.0 mmol g-1 within 72 h with a remarkable CO selectivity of 97%, which is superior to that of MOF-526 without BAMeIm+ modification and other amounts of BAMeIm+ loaded. Furthermore, density functional theory calculations were performed to study the mechanism of the CO2 reduction.

2.
Acta Pharmacol Sin ; 2024 May 14.
Article En | MEDLINE | ID: mdl-38744938

Primary Sjögren's syndrome (pSS) is a chronic inflammatory autoimmune disease with an unclear pathogenesis, and there is currently no approved drug for the treatment of this disease. Iguratimod, as a novel clinical anti-rheumatic drug in China and Japan, has shown remarkable efficacy in improving the symptoms of patients with pSS in clinical studies. In this study we investigated the mechanisms underlying the therapeutic effect of iguratimod in the treatment of pSS. Experimental Sjögren's syndrome (ESS) model was established in female mice by immunizing with salivary gland protein. After immunization, ESS mice were orally treated with iguratimod (10, 30, 100 mg·kg-1·d-1) or hydroxychloroquine (50 mg·kg-1·d-1) for 70 days. We showed that iguratimod administration dose-dependently increased saliva secretion, and ameliorated ESS development by predominantly inhibiting B cells activation and plasma cell differentiation. Iguratimod (30 and 100 mg·kg-1·d-1) was more effective than hydroxychloroquine (50 mg·kg-1·d-1). When the potential target of iguratimod was searched, we found that iguratimod bound to TEC kinase and promoted its degradation through the autophagy-lysosome pathway in BAFF-activated B cells, thereby directly inhibiting TEC-regulated B cells function, suggesting that the action mode of iguratimod on TEC was different from that of conventional kinase inhibitors. In addition, we found a crucial role of TEC overexpression in plasma cells of patients with pSS. Together, we demonstrate that iguratimod effectively ameliorates ESS via its unique suppression of TEC function, which will be helpful for its clinical application. Targeting TEC kinase, a new regulatory factor for B cells, may be a promising therapeutic option.

3.
J Am Chem Soc ; 146(19): 13571-13579, 2024 May 15.
Article En | MEDLINE | ID: mdl-38710105

Based on quantum mechanically guided experiments that observed elusive intermediates in the domain of inception that lies between large molecules and soot particles, we provide a new mechanism for the formation of carbonaceous particles from gas-phase molecular precursors. We investigated the clustering behavior of resonantly stabilized radicals (RSRs) and their interactions with unsaturated hydrocarbons through a combination of gas-phase reaction experiments and theoretical calculations. Our research directly observed a sequence of covalently bound clusters (CBCs) as key intermediates in the evolution from small RSRs, such as benzyl (C7H7), indenyl (C9H7), 1-methylnaphthyl (1-C11H9), and 2-methylnaphthyl (2-C11H9), to large polycyclic aromatic hydrocarbons (PAHs) consisting of 28 to 55 carbons. We found that hydrogen abstraction and RSR addition drive the formation and growth of CBCs, leading to progressive H-losses, the generation of large PAHs and PAH radicals, and the formation of white smoke (incipient carbonaceous particles). This mechanism of progressive H-losses from CBCs (PHLCBC) elucidates the crucial relationship among RSRs, CBCs, and PAHs, and this study provides an unprecedentedly seamless path of observed assembly from small RSRs to large nanoparticles. Understanding the PHLCBC mechanism over a wide temperature range may enhance the accuracy of multiscale models of soot formation, guide the synthesis of carbonaceous nanomaterials, and deepen our understanding of the origin and evolution of carbon within our galaxy.

4.
J Mol Cell Biol ; 2024 May 01.
Article En | MEDLINE | ID: mdl-38692847

The rs72613567:TA polymorphism in 17-beta hydroxysteroid dehydrogenase 13 (HSD17B13) has been found to reduce the progression from steatosis to nonalcoholic steatohepatitis. In this study, we sought to define the pathogenic role of HSD17B13 in triggering liver inflammation. Here we find that HSD17B13 forms liquid-liquid phase separation (LLPS) around lipid droplets in the livers of nonalcoholic steatohepatitis patients. The dimerization of HSD17B13 supports the LLPS formation and promotes its enzymatic function. HSD17B13 LLPS increases the biosynthesis of platelet activating factor (PAF), which in turn promotes fibrinogen synthesis and leukocyte adhesion. Blockade of PAFR or STAT3 pathway inhibited the fibrinogen synthesis and leukocyte adhesion. Importantly, adeno-associated viral-mediated xeno-expression of human HSD17B13 exacerbated western diet/carbon tetrachloride-induced liver inflammation in Hsd17b13-/- mice. In conclusion, our results suggest that HSD17B13 LLPS triggers liver inflammation by promoting PAF-mediated leukocyte adhesion, and targeting HSD17B13 phase transition could be a promising therapeutic approach for treating hepatic inflammation in chronic liver disease.

5.
J Med Virol ; 96(5): e29640, 2024 May.
Article En | MEDLINE | ID: mdl-38699969

After the termination of zero-COVID-19 policy, the populace in China has experienced both Omicron BA.5 and XBB waves. Considering the poor antibody responses and severe outcomes observed among the elderly following infection, we conducted a longitudinal investigation to examine the epidemiological characteristics and antibody kinetics among 107 boosted elderly participants following the Omicron BA.5 and XBB waves. We observed that 96 participants (89.7%) were infected with Omicron BA.5, while 59 (55.1%) participants were infected with Omicron XBB. Notably, 52 participants (48.6%) experienced dual infections of both Omicron BA.5 and XBB. The proportion of symptomatic cases appeared to decrease following the XBB wave (18.6%) compared to that after the BA.5 wave (59.3%). Omicron BA.5 breakthrough infection induced lower neutralizing antibody titers against XBB.1.5, BA.2.86, and JN.1, while reinfection with Omicron XBB broadened the antibody responses against all measured Omicron subvariants and may alleviate the wild type-vaccination induced immune imprinting. Boosted vaccination type and comorbidities were the significant factors associated with antibody responses. Updated vaccines based on emerging severe acute respiratory syndrome coronavirus 2 variants are needed to control the Coronavirus Disease 2019 pandemic in the elderly.


Antibodies, Neutralizing , Antibodies, Viral , Breakthrough Infections , COVID-19 Vaccines , COVID-19 , Immunization, Secondary , SARS-CoV-2 , Humans , COVID-19/immunology , COVID-19/prevention & control , COVID-19/epidemiology , China/epidemiology , Aged , Antibodies, Viral/blood , Male , Female , Antibodies, Neutralizing/blood , SARS-CoV-2/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Aged, 80 and over , Middle Aged , Longitudinal Studies , Vaccination
6.
Foods ; 13(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38731750

Salmonella is a common foodborne pathogen that can cause food poisoning, posing a serious threat to human health. Therefore, quickly, sensitively, and accurately detecting Salmonella is crucial to ensuring food safety. For the Salmonella hilA gene, we designed Recombinase-aided amplification (RAA) primers and dsDNA-specific nuclease (DNase) probes. The ideal primer and probe combination was found when conditions were optimized. Under UV light, a visual Salmonella detection technique (RAA-dsDNase) was developed. Additionally, the RAA-dsDNase was modified to further reduce pollution hazards and simplify operations. One-pot RAA-dsDNase-UV or one-pot RAA-dsDNase-LFD was developed as a Salmonella detection method, using UV or a lateral flow dipstick (LFD) for result observation. Among them, one-pot RAA-dsDNase and one-pot RAA-dsDNase-LFD had detection times of 50 min and 60 min, respectively, for detecting Salmonella genomic DNA. One-pot RAA-dsDNase-UV had a detection limit of 101 copies/µL and 101 CFU/mL, while one-pot RAA-dsDNase-LFD had a sensitivity of 102 copies/µL and 102 CFU/mL. One-pot RAA-dsDNase-UV and one-pot RAA-dsDNase-LFD assays may identify 17 specific Salmonella serovars witho ut causing a cross-reaction with the remaining 8 bacteria, which include E. coli. Furthermore, Salmonella in tissue and milk samples has been reliably detected using both approaches. Overall, the detection method developed in this study can quickly, sensitively, and accurately detect Salmonella, and it is expected to become an important detection tool for the prevention and control of Salmonella in the future.

7.
Aging (Albany NY) ; 16(8): 7060-7072, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38656878

BACKGROUND: It is reported that the incidence rate and mortality of lung cancer are very high. Therefore, early diagnosis and identification of specific biomarkers are crucial for the clinical treatment of lung cancer. This study aims to comprehensively investigate the prognostic significance of KRT6A in human lung cancer. METHODS: The GEO2R online tool was utilized to analyze the differential expression of mRNA between lung carcinoma tissues and radioresistant tissues in the GSE73095 and GSE197236 datasets. DAVID database was used to perform GO and KEGG enrichment analyses on target genes. The Kaplan-Meier plotter tool was used to analyze the impact of key messenger ribonucleic acid on the survival status of lung cancer. In addition, quantitative real-time polymerase chain reaction (qPCR) was used to investigate the impact of key genes on the phenotype of lung cancer cells. After the knockout, we conducted cell migration and CCK-8 experiments to detect their effects on cell proliferation and invasion. RESULTS: 40 differentially expressed genes (DEGs) were chosen from GSE73095 and 118 DEGs were chosen from GSE197236. Kaplan-Meier map analysis showed that the overall cancer survival rate of the high-expression KRT6A group was higher than that of the low-expression group (P < 0.05). Besides, cell experiments have shown that when the KRT6A gene is downregulated, the proliferation and invasion ability of lung cancer cells is weakened. CONCLUSIONS: Our research concluded that KRT6A may take part in the radioresistance and progression of lung cancer and can be a potential biomarker for lung cancer patients.


Gene Expression Regulation, Neoplastic , Keratin-6 , Lung Neoplasms , Neoplasm Invasiveness , Radiation Tolerance , Signal Transduction , Tumor Suppressor Protein p53 , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/mortality , Keratin-6/genetics , Keratin-6/metabolism , Radiation Tolerance/genetics , Neoplasm Invasiveness/genetics , Signal Transduction/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Cell Movement/genetics , Cell Proliferation/genetics , Cell Line, Tumor , Prognosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Neoplasm Metastasis
8.
Front Microbiol ; 15: 1383509, 2024.
Article En | MEDLINE | ID: mdl-38655086

To investigate the anti-inflammatory and antifungal effects of plumbagin (PL) in Aspergillus fumigatus (A. fumigatus) keratitis, the minimum inhibitory concentration (MIC), time-killing curve, spore adhesion, crystal violet staining, calcium fluoride white staining, and Propidium Iodide (PI) staining were employed to assess the antifungal activity of PL in vitro against A. fumigatus. The cytotoxicity of PL was assessed using the Cell Counting Kit-8 (CCK8). The impact of PL on the expression of HMGB1, LOX-1, TNF-α, IL-1ß, IL-6, IL-10 and ROS in A. fumigatus keratitis was investigated using RT-PCR, ELISA, Western blot, and Reactive oxygen species (ROS) assay. The therapeutic efficacy of PL against A. fumigatus keratitis was assessed through clinical scoring, plate counting, Immunofluorescence and Hematoxylin-Eosin (HE) staining. Finally, we found that PL inhibited the growth, spore adhesion, and biofilm formation of A. fumigatus and disrupted the integrity of its cell membrane and cell wall. PL decreased IL-6, TNF-α, and IL-1ß levels while increasing IL-10 expression in fungi-infected mice corneas and peritoneal macrophages. Additionally, PL significantly attenuated the HMGB1/LOX-1 pathway while reversing the promoting effect of Boxb (an HMGB1 agonist) on HMGB1/LOX-1. Moreover, PL decreased the level of ROS. In vivo, clinical scores, neutrophil recruitment, and fungal burden were all significantly reduced in infected corneas treated with PL. In summary, the inflammatory process can be inhibited by PL through the regulation of the HMGB-1/LOX-1 pathway. Simultaneously, PL can exert antifungal effects by limiting fungal spore adhesion and biofilm formation, as well as causing destruction of cell membranes and walls.

9.
Natl Sci Rev ; 11(4): nwae043, 2024 Apr.
Article En | MEDLINE | ID: mdl-38650829

For sessile plants, gene expression plays a pivotal role in responding to salinity stress by activating or suppressing specific genes. However, our knowledge of genetic variations governing gene expression in response to salt stress remains limited in natural germplasm. Through transcriptome analysis of the Global Mini-Core Rice Collection consisting of a panel of 202 accessions, we identified 22 345 and 27 610 expression quantitative trait loci associated with the expression of 7787 and 9361 eGenes under normal and salt-stress conditions, respectively, leveraging the super pan-genome map. Notably, combined with genome-wide association studies, we swiftly pinpointed the potential candidate gene STG5-a major salt-tolerant locus known as qSTS5. Intriguingly, STG5 is required for maintaining Na+/K+ homeostasis by directly regulating the transcription of multiple members of the OsHKT gene family. Our study sheds light on how genetic variants influence the dynamic changes in gene expression responding to salinity stress and provides a valuable resource for the mining of salt-tolerant genes in the future.

10.
Adv Mater ; : e2401926, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38631691

Ordered pore engineering that embeds uniform pores with periodic alignment in electrocatalysts opens up a new avenue for achieving further performance promotion. Hierarchically ordered porous metal-organic frameworks (HOP-MOFs) possessing multilevel pores with ordered distribution are the promising precursors for the exploration of ordered porous electrocatalysts, while the scalable acquisition of HOP-MOFs with editable components and adjustable pore size regimes is critical. This review presents recent progress on hierarchically ordered pore engineering of MOF-based materials for enhanced electrocatalysis. The synthetic strategies of HOP-MOFs with different pore size regimes, including the self-assembly guided by reticular chemistry, surfactant, nanoemulsion, and nanocasting, are first introduced. Then the applications of HOP-MOFs as the precursors for exploring hierarchically ordered porous electrocatalysts are summarized, selecting representatives to highlight the boosted performance. Especially, the intensification of molecule and ion transport integrated with optimized electron transfer and site exposure over the hierarchically ordered porous derivatives are emphasized to clarify the directional transfer and integration effect endowed by ordered pore engineering. Finally, the remaining scientific challenges and an outlook of this field are proposed. It is hoped that this review will guide the hierarchically ordered pore engineering of nanocatalysts for boosting the catalytic performance and promoting the practical applications.

11.
Adv Mater ; : e2401163, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38639567

Single-atom catalysts (SACs) are considered prominent materials in the field of catalysis due to their high metal atom utilization and selectivity. However, the wide-ranging applications of SACs remain a significant challenge due to their complex preparation processes. Here, a universal strategy is reported to prepare a series of noble metal single atoms on different non-noble metal oxides through a facile one-step thermal decomposition of molten salts. By using a mixture of non-noble metal nitrate and a small-amount noble metal chloride as the precursor, noble metal single atoms can be easily introduced into the non-noble metal oxide lattice owing to the cation exchange in the in situ formed molten salt, followed by the thermal decomposition of nitrate anions during the heating process. Analyses using aberration-corrected high-angle annular dark-field scanning transmission electron microscopy and extended X-ray absorption fine structure spectroscopy confirm the formation of the finely dispersed single atoms. Specially, the as-synthesized Ir single atoms (10.97 wt%) and Pt single atoms (4.60 wt%) on the Co3O4 support demonstrate outstanding electrocatalytic activities for oxygen evolution reaction and hydrogen evolution reaction, respectively.

12.
Angew Chem Int Ed Engl ; : e202406947, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38650436

Supported metal catalysts with appropriate metal-support interactions (MSIs) hold a great promise for heterogeneous catalysis. However, ensuring tight immobilization of metal clusters/nanoparticles on the support while maximizing the exposure of surface active sites remains a huge challenge. Herein, we report an Ir/WO3 catalyst with a new enrooted-type MSI in which Ir clusters are, unprecedentedly, atomically enrooted into the WO3 lattice. The enrooted Ir atoms decrease the electron density of the constructed interface compared to the adhered (root-free) type, thereby achieving appropriate adsorption toward oxygen intermediates, ultimately leading to high activity and stability for oxygen evolution in acidic media. Importantly, this work provides a new enrooted-type supported metal catalyst, which endows suitable MSI and maximizes the exposure of surface active sites in contrast to the conventional adhered, embedded, and encapsulated types.

13.
PLoS One ; 19(4): e0301428, 2024.
Article En | MEDLINE | ID: mdl-38625862

In urban areas with limited underground space, the new tunnel construction introduces additional loads and displacements to existing tunnels, raising serious safety concerns. These concerns become particularly pronounced in the case of closely undercrossing excavation at zero-distance. The conventional elastic foundation beam model, which assumes constant reaction coefficients for the subgrade, fails to account for foundation loss. In this study, the existing tunnel is modeled as an Euler-Bernoulli beam supported by the Pasternak elastic foundation, and the foundation loss caused by zero-distance undercrossing excavations is considered. Furthermore, an analytical solution is proposed to evaluate the mechanical response in segments, by establishing governing differential equations and boundary conditions for the excavation and neutral zones, and underpinning loads are also considered. The analytical solution is validated in two case studies. Finally, a parametric analysis is performed to explore the influence of various parameters on the mechanical response of the existing tunnel.

14.
Front Cardiovasc Med ; 11: 1349363, 2024.
Article En | MEDLINE | ID: mdl-38562184

Backgrounds: Cuprotosis is a newly discovered programmed cell death by modulating tricarboxylic acid cycle. Emerging evidence showed that cuprotosis-related genes (CRGs) are implicated in the occurrence and progression of multiple diseases. However, the mechanism of cuprotosis in heart failure (HF) has not been investigated yet. Methods: The HF microarray datasets GSE16499, GSE26887, GSE42955, GSE57338, GSE76701, and GSE79962 were downloaded from the Gene Expression Omnibus (GEO) database to identify differentially expressed CRGs between HF patients and nonfailing donors (NFDs). Four machine learning models were used to identify key CRGs features for HF diagnosis. The expression profiles of key CRGs were further validated in a merged GEO external validation dataset and human samples through quantitative reverse-transcription polymerase chain reaction (qRT-PCR). In addition, Gene Ontology (GO) function enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, and immune infiltration analysis were used to investigate potential biological functions of key CRGs. Results: We discovered nine differentially expressed CRGs in heart tissues from HF patients and NFDs. With the aid of four machine learning algorithms, we identified three indicators of cuprotosis (DLAT, SLC31A1, and DLST) in HF, which showed good diagnostic properties. In addition, their differential expression between HF patients and NFDs was confirmed through qRT-PCR. Moreover, the results of enrichment analyses and immune infiltration exhibited that these diagnostic markers of CRGs were strongly correlated to energy metabolism and immune activity. Conclusions: Our study discovered that cuprotosis was strongly related to the pathogenesis of HF, probably by regulating energy metabolism-associated and immune-associated signaling pathways.

15.
BMJ Open ; 14(4): e078516, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38569703

INTRODUCTION: The surgical intervention approach to insulinomas in proximity to the main pancreatic duct remains controversial. Standard pancreatic resection is recommended by several guidelines; however, enucleation (EN) still attracts surgeons with less risk of late exocrine/endocrine insufficiency, despite a higher postoperative pancreatic fistula (POPF) rate. Recently, the efficacy and safety of preoperative pancreatic stent placement before the EN have been demonstrated. Thus, a multicentre open-label study is being conducted to evaluate the efficacy and safety of stent placement in improving the outcome of EN of insulinomas in proximity to the main pancreatic duct. METHODS AND ANALYSIS: This is a prospective, randomised, open-label, superiority clinical trial conducted at multiple tertiary centres in China. The major eligibility criterion is the presence of insulinoma located in the head and neck of the pancreas in proximity (≤2 mm) to the main pancreatic duct. Blocked randomisation will be performed to allocate patients into the stent EN group and the direct EN group. Patients in the stent EN group will go through stent placement by the endoscopist within 24 hours before the EN surgery, whereas other patients will receive EN surgery directly. The primary outcome is the assessment of the superiority of stent placement in reducing POPF rate measured by the International Study Group of Pancreatic Surgery standard. Both interventions will be performed in an inpatient setting and regular follow-up will be performed. The primary outcome (POPF rate) will be tested for superiority with the Χ2 test. The difference in secondary outcomes between the two groups will be analysed using appropriate tests. ETHICS AND DISSEMINATION: The study has been approved by the Peking Union Medical College Hospital Institutional Review Board (K23C0195), Ruijin Hospital Ethics Committee (2023-314), Peking University First Hospital Ethics Committee (2024033-001), Institutional Review Board of Xuanwu Hospital of Capital Medical University (2023223-002), Ethics Committee of the First Affiliated Hospital of Xi'an Jiaotong University (XJTU1AF2023LSK-473), Institutional Review Board of Tongji Medical College Tongji Hospital (TJ-IRB202402059), Ethics Committee of Tongji Medical College Union Hospital (2023-0929) and Shanghai Cancer Center Institutional Review Board (2309282-16). The results of the study will be published in an international peer-reviewed journal. TRIAL REGISTRATION NUMBER: NCT05523778.


Insulinoma , Pancreatic Neoplasms , Humans , Insulinoma/surgery , Prospective Studies , China , Pancreas , Pancreatic Ducts/surgery , Pancreatic Fistula/etiology , Pancreatic Fistula/prevention & control , Postoperative Complications , Stents , Pancreatic Neoplasms/surgery , Hospitals , Randomized Controlled Trials as Topic , Multicenter Studies as Topic
16.
J Formos Med Assoc ; 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38582737

BACKGROUND: Acute myeloid leukemia (AML) is a hematological malignancy with a heterogeneous prognosis. Novel markers are required to accurately assess the prognosis and formulate treatment plans. METHODS: The association of ARHGAP family genes with prognostic value in acute myeloid leukemia (AML) was assessed using public databases (CCLE, GEPIA, TCGA, and GEO). RESULTS: Elevated expression of ARHGAP43 (SH3BP1) was associated with poor prognosis in patients with acute myeloid leukemia. ARHGAP43 (SH3BP1) expression was higher in the poor/adverse prognosis (P < 0.001) and TP53 mutation groups (P = 0.0093). Higher ARHGAP43 (SH3BP1) expression was found to be an independent prognostic predictor in multivariate COX regression analysis (HR = 1.317, 95% CI: 1.008-1.720, P = 0.044). Higher ARHGAP43 (SH3BP1) expression who did not receive hematopoietic stem cell transplantation (HSCT) had shorter overall survival (OS) and progression-free survival (PFS) (OS: median: 7.60 vs. 24.90 months; P = 0.006; PFS: median: 11.40 vs. 27.22 months; P = 0.0096), whereas OS and PFS of patients who received HSCT were unaffected, suggesting that HSCT is a better treatment option for patients with higher ARHGAP43 (SH3BP1) expression. KEGG and GSEA analyses revealed that high-expression ARHGAP43 (SH3BP1) was related to inflammation and immune response. Additionally, down-regulation of ARHGAP43 (SH3BP1) expression inhibited AML cell proliferation. CONCLUSION: These findings highlight the clinical potential of ARHGAP43 (SH3BP1) as a novel biomarker of AML, with higher levels indicating a poor prognosis.

17.
Appl Opt ; 63(8): 2101-2108, 2024 Mar 10.
Article En | MEDLINE | ID: mdl-38568654

This paper presents the test results for high-performance and high-uniformity waveguide silicon-based germanium (Ge) photodetectors (PDs) for the O band and C band. Both wafer-scale and chip-scale test results are provided. The fabricated lateral p-i-n (LPIN) PDs exhibit a responsivity of 0.97 A/W at a bias of -2V, a bandwidth of 60 GHz, and a no-return-to-zero (NRZ) eye diagram rate of 53.125 Gb/s. Additionally, an average dark current of 22.4 nA was obtained in the vertical p-i-n (VPIN) PDs at -2V by optimizing the doping process. The device can reach an average responsivity of 0.9 A/W in the O band. The standard deviation in a wafer with a dark current and responsivity is as low as 7.77 nA and 0.03 A/W at -2V, respectively.

18.
Materials (Basel) ; 17(8)2024 Apr 17.
Article En | MEDLINE | ID: mdl-38673197

In order to enhance the quality of diamond composite materials, this work employs a Cu-Co-Fe and Ni-Cr-Cu pre-alloyed powder mixture as a transition layer, and utilizes laser-welding technology for saw blade fabrication. By adjusting the laser-welding process parameters, including welding speed and welding power, well-formed welded joints were achieved, and the microstructure and mechanical properties of the welded joints were investigated. The results demonstrate that the best welding performance was achieved at a laser power of 1600 W and a welding speed of 1400 mm/min, with a remarkable tooth engagement strength of up to 819 MPa. The fusion zone can be divided into rich Cu phase and rich Fe phase regions, characterized by coarse grains without apparent preferred orientation. The microstructure of the heat-affected zone primarily consists of high-hardness brittle quenched needle-like martensite, exhibiting a sharp increase in microhardness up to 550 HV. Fracture occurred at the boundary between the fusion zone and the heat-affected zone of the base material, where stress concentration was observed. By adjusting the welding parameters and transition layer materials, the mechanical properties of the joints were improved, thereby achieving a reliable connection between diamond composite materials and the metal substrate.

19.
Biochem Biophys Res Commun ; 709: 149812, 2024 May 21.
Article En | MEDLINE | ID: mdl-38564942

Colorectal cancer (CRC) is the third most common cancer globally. Regorafenib, a multi-target kinase inhibitor, has been approved for treating metastatic colorectal cancer patients who have undergone at least two prior standard anti-cancer therapies. However, regorafenib efficacy as a single agent remains suboptimal. A promising target at the crossroads of multiple signaling pathways is the Src homology 2 domain-containing protein tyrosine phosphatase (SHP2). However, a combination approach using SHP2 inhibitors (SHP099) and anti-angiogenic drugs (Regorafenib) has not been reported in current research. In this study, we conducted in vitro experiments combining SHP099 and regorafenib and established an MC-38 colon cancer allograft mouse model. Our results revealed that co-treatment with SHP099 and regorafenib significantly inhibited cell viability and altered the biological characteristics of tumor cells compared with treatment alone in vitro. Furthermore, the combination strategy demonstrated superior therapeutic efficacy compared to monotherapy with either drug. This was evidenced by reduced tumor size, decreased proliferation, increased apoptosis, normalized tumor microvasculature, and improved antitumor immune response in vivo. These findings suggest that the combination of an SHP2 inhibitor and regorafenib is a promising therapeutic approach for patients with colorectal cancer.


Antineoplastic Agents , Colonic Neoplasms , Animals , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Colonic Neoplasms/drug therapy , Phenylurea Compounds/pharmacology , Phenylurea Compounds/therapeutic use , Pyridines/pharmacology , Pyridines/therapeutic use
20.
Schizophrenia (Heidelb) ; 10(1): 49, 2024 Apr 27.
Article En | MEDLINE | ID: mdl-38678036

Previous research has suggested a correlation between socioeconomic status (SES) and mental diseases, while personality traits may be associated with SES and the risk of mental disorders. However, the causal nature of these associations remains largely uncertain. Our Mendelian randomization (MR) study aims to explore the bidirectional causality between SES and mental disorders, as well as to evaluate the potential mediating role of personality in these associations. Using bidirectional MR approach, we assessed the causality between SES indicators and mental disorders. We then used a two-step MR method to further investigate whether and to what extent personality mediates the causal associations in Caucasians. The forward MR analyses identified that years of education, household income, age at first birth and the Townsend deprivation index had a causal association with at least one mental disorder. The reverse MR analyses identified causal effects of genetically predicted schizophrenia, bipolar disorder, and attention deficit/hyperactivity disorder on five SES indicators. Importantly, mediation analysis showed that neuroticism partly mediated the causality of household income and years of education on major depressive disorder, respectively. In brief, our study confirmed the bidirectional relationship between SES and mental disorders. We also revealed the role of neuroticism in mediating the association between SES and major depressive disorder, highlighting the importance of considering both socioeconomic and personality factors in mental health research and interventions.

...